Problem positioning and expected value highlights
Wouldn't it be easier to simply retire the legacy application and start anew?
Yes, but even freshly started software development projects fail. That’s what our client – along with State Oregon – knew firsthand, with oversights happening across multiple domains: poorly documented requirements, underfunding or poor organization management. To retire and start from a clean slate for our client meant more work over the already huge effort. Modernization isn’t always justified, but in many cases – this one included – starting over means entangling into an even more dramatic experience than working with an inefficient system.
Moreover, this project held promise. The BI application market is valued at US$ 25 bn in 2023 and projected to grow at 5.83% per year, making the application a great potential source of extra cash for our client.
My personal opinion, if you will, is that in this industry where a gazillion of software projects go to the trash bin annually, modernization instead of retirement gives some peace of mind.
This is a two-in-one BI-application and a report generating system (premiums, claims, cession sales). The application is designed for collection, processing and analysis of information and its visualization. Currently, it operates in the US only and is mainly intended to serve the needs of the contractors selling our customer’s services. Only, it’s slow on giving the business value and quick on requesting a ton of corporate resources (in terms of human hours and energy).
In order to give the project some positive dynamics from day 1, we started from a very clear problem positioning and a description of expected values. This would then give a healthy start to the vision and strategy elaboration.
Thus, three key problems were placed before us that gave rise to a more detailed roadmap.
With these three issues closed at lowest reasonable costs for the company, the system would start generating value, while we could proceed with tweaks and further performance improvements.
Have a look at the system key modules and functionality in our case study on this project.
The challenges of our BI system modernization journey
Enterprise-level legacy modernization creates challenges. Basically, you should do the same thing as on a general-purpose software development journey, but with more scrutiny for scalability, performance and more efficiently. On this project there were at least three:
- find a high performing and cost-effective reporting option that would pass two rounds of corporate decision making
- reuse denormalized data collected for a different kind of reports
- establish new more efficient architecture using the available tools and infrastructure of the client.
Decision making
The client has a splendid IT department with deep expertise, in business analysis and software development alike. The organization is enormous, with a rich 20-year long history. Its software has a long and rich history, too, with some unexpected twists that only old dogs can warn you about. Whenever architectural or tech stack decisions should be made, the client – very logically – has an upper hand.
- Decision making starts at the IT director level. In case our plan passes a scrutinous check for performance, security and cost-effectiveness, it moves on to a new level.
- VPs. They don’t speak the language of sophisticated architectural approaches or all things technological. It’s the kingdom of numbers and values. If it’s simple and costs a dime, we’ll do it. This is how it works. After all, enterprise players aren’t rich because they earn a lot. Rather, it’s because they waste little.
- Once we’ve passed two levels of approval, time for …further discussions! The tech meetups start where we discuss in more detail the resources we need (human resources, infrastructure, tooling, etc.), development approaches, set up further consultations (with Microsoft reps, for example, who give us a hand whenever we cannot handle, say, cloud databases issues on our own). We do a lot of talking to decompose the logic bundle, too, to set up the ETL pipelines and translate our talking into the development tasks, finally.
Denormalized data
The client’s contractors – major users of the application – provide data in various formats, which should be synchronized. For this, the client has a temporary database and a whole new team in charge. We take those data that just underwent primary processing and then use it for our own reporting needs.Those data are neither structured, nor easy to read. We only take the portion that might be useful for us, without overloading our reporting tools.
Making our way through the data and business logic with only a codebase able to tell us the truth was quite a journey. (Why not check the documentation? More on that later.)
Architecture
The issue that our tech lead noticed first and foremost was the system architecture that grew too complex over time. The application was decoupled into several microservices that still used a single database, with separate code bases. This made the debugging process a nightmare, to say the least.
ETL
The ETL ecosystem is a whole new different story. They say that insurance companies are sitting on piles of data and doing nothing with them. So wrong. (Have a look at these stories of my colleague to have a better understanding of what is going on with data in the insurance industry.) On this project, ETL gave us quite a hard time due to multiple data sources and inconsistent documentation.
Turbulent knowledge transfer and an uneasy start
For this project we already had major business requirements elicited by the previous vendor. A sort of a roadmap existed, too. There were even examples of how it all works on certain platforms.
However, the documentation was unfit for our needs, it was incomplete and couldn't serve as a guide for us. A good part of it was made of work requests that together formed a rough roadmap. Even in such a form, the project documentation had a very short life span of four months. Four months after which months of undocumented changes followed.
Knowledge transfer wasn’t all roses, either. After getting a cold shoulder from the client, the previous vendor had only a month's time to hand over the system to us.
Whenever the code base couldn't answer our questions, we worked closely with the customer’s Business Analyst, who joined the project four months earlier.
Hampered knowledge transfer, insufficient documentation / lack of documentation, overly complex logic. How did the Symfa’s engineers still manage to get the ins and outs of the system only in a month’s time?
Well. We’ve been here before, and not for once. Almost each enterprise project you take, you start it with the system knowledge restoration. We hit every developer’s door who was engaged on the project earlier, set up meetups with BAs, collect the remnants of the documentation or anything remotely resembling the documentation (work requests, roadmaps, etc.). This ain’t nothing new for any vendor working with enterprise projects.
Find out how the story unfolds in the next part next week
Wait for the next part of the article to see our engineering team in action. In the next two parts of the article, Ilya Mokin, Head of R&D, and Sebastian Cruz, the tech lead and the architect, will share with you:
- How we tackled the sluggish reporting
- What is being done on the project to ensure uninterrupted data flow
- Why documentation is important for projects with heavy data flows.
Stay tuned.
Follow us on LinkedIn and X to be the first to know about our blog updates.